Identification of the key structural motifs involved in HspB8/HspB6-Bag3 interaction.

نویسندگان

  • Margit Fuchs
  • Dominic J Poirier
  • Samuel J Seguin
  • Herman Lambert
  • Serena Carra
  • Steve J Charette
  • Jacques Landry
چکیده

The molecular chaperone HspB8 [Hsp (heat-shock protein) B8] is member of the B-group of Hsps. These proteins bind to unfolded or misfolded proteins and protect them from aggregation. HspB8 has been reported to form a stable molecular complex with the chaperone cohort protein Bag3 (Bcl-2-associated athanogene 3). In the present study we identify the binding regions in HspB8 and Bag3 crucial for their interaction. We present evidence that HspB8 binds to Bag3 through the hydrophobic groove formed by its strands beta4 and beta8, a region previously known to be responsible for the formation and stability of higher-order oligomers of many sHsps (small Hsps). Moreover, we demonstrate that two conserved IPV (Ile-Pro-Val) motifs in Bag3 mediate its binding to HspB8 and that deletion of these motifs suppresses HspB8 chaperone activity towards mutant Htt43Q (huntingtin exon 1 fragment with 43 CAG repeats). In addition, we show that Bag3 can bind to the molecular chaperone HspB6. The interaction between HspB6 and Bag3 requires the same regions that are involved in the HspB8-Bag3 association and HspB6-Bag3 promotes clearance of aggregated Htt43Q. Our findings suggest that the co-chaperone Bag3 might prevent the accumulation of denatured proteins by regulating sHsp activity and by targeting their substrate proteins for degradation. Interestingly, a mutation in one of Bag3 IPV motifs has recently been associated with the development of severe dominant childhood muscular dystrophy, suggesting a possible important physiological role for HspB-Bag3 complexes in this disease.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Caught in the middle: the role of Bag3 in disease.

Bag3 is a Bag family co-chaperone that regulates the ATPase activity of Hsp70 (heat-shock protein 70) chaperones. Recent studies have demonstrated that Bag3 can initiate macroautophagy in co-operation with small heat-shock protein HspB8. In this issue of the Biochemical Journal, Fuchs and co-workers have discovered the IPV motif in Bag3 that is necessary for binding to HspB8. The authors have a...

متن کامل

BAG3 Directly Interacts with Mutated alphaB-Crystallin to Suppress Its Aggregation and Toxicity

A homozygous disruption or genetic mutation of the bag3 gene causes progressive myofibrillar myopathy in mouse and human skeletal and cardiac muscle disorder while mutations in the small heat shock protein αB-crystallin gene (CRYAB) are reported to be responsible for myofibrillar myopathy. Here, we demonstrate that BAG3 directly binds to wild-type αB-crystallin and the αB-crystallin mutant R120...

متن کامل

A Role for the Chaperone Complex BAG3-HSPB8 in Actin Dynamics, Spindle Orientation and Proper Chromosome Segregation during Mitosis

The co-chaperone BAG3, in complex with the heat shock protein HSPB8, plays a role in protein quality control during mechanical strain. It is part of a multichaperone complex that senses damaged cytoskeletal proteins and orchestrates their seclusion and/or degradation by selective autophagy. Here we describe a novel role for the BAG3-HSPB8 complex in mitosis, a process involving profound changes...

متن کامل

HSPB8 Promotes the Fusion of Autophagosome and Lysosome during Autophagy in Diabetic Neurons

Although autophagy has been proposed to play an emerging role in diabetic neuropathy, autophagy and its possible role remains unclear. Moreover, only few studies about diabetes have explored the autophagy mediated by heat shock protein beta-8 (HSPB8) and Bcl-2 associated athanogene 3 (BAG3). In the present study, we examined the autophagy induced by high glucose levels in an in vivo rat model o...

متن کامل

NF-κB regulates protein quality control after heat stress through modulation of the BAG3-HspB8 complex.

We previously found that the NF-κB transcription factor is activated during the recovery period after heat shock; moreover, we demonstrated that NF-κB is essential for cell survival after heat shock by activating autophagy, a mechanism that probably helps the cell to cope with hyperthermic stress through clearance of damaged proteins. In this study, we analyze the involvement of NF-κB in basal ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 425 1  شماره 

صفحات  -

تاریخ انتشار 2009